Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Notícias Corporativas

Como o ML pode ser utilizado no mercado corporativo?

Há poucos dias do fim do ano, a expectativa é que, de forma conjunta, os investimentos das empresas do país em IA (Inteligência Artificial) devem somar um total de US$ 504 milhões (cerca de R$ 2,6 bilhões) até o final do mês. É o que prevê uma estimativa da consultoria de tecnologia IDC compartilhada pela CNN Brasil, que aponta para um crescimento de 28% em relação ao ano anterior.

Nos últimos dois anos, o investimento em IA vem em uma crescente em todo o mundo. Segundo informações do “2022 AI Index Annual Report”, publicado pelo Stanford Institute for Human-Centered Artificial Intelligence (HAI), os aportes privados no sistema mais do que dobraram de 2020 para 2021 e chegam a US$ 95 bilhões (R$ 491,40 bilhões). A inovação, composta por hardware e software, permite que máquinas e dispositivos aprendam com o funcionamento e passem a executar tarefas baseados na experiência adquirida. 

Nesse panorama, o especialista em cibersegurança Deyvid Sousa chama a atenção para a crescente utilização do ML (Machine Learning, na sigla em inglês – Engenharia de Aprendizado de Máquina, em português) no mercado corporativo e para os resultados que a ferramenta pode oferecer.

Para Sousa, é importante destacar que ML é uma parte da chamada IA (Inteligência Artificial) dedicada ao entendimento e a respectiva construção de métodos para realização desse entendimento.

“De forma simplista, os dados são ‘entendidos’. As novas interações são projetadas com a respectiva performance sendo monitoradas e, posteriormente, os desvios corrigidos, o que promove avanço e refinamento ao longo do tempo”, explica.

ML oferece oportunidades para o mercado corporativo

O head of cybersecurity acrescenta que, fundamentalmente, o processo de ML se utiliza de dados para estabelecer modelos e categorizar as decisões ou respectivas entregas. Dessa forma, com a explosão de dados recente, é possível observar mais aplicações.

“Grandes provedores de tecnologia promovem ferramentas para processar os dados de forma simplificada, permitindo que diferentes modelos de ML (supervisionado, esforço e não supervisionado) sejam adotados rapidamente”, diz ele.

Sousa destaca que diversas estratégias de negócio podem ser utilizadas com o ML. “As aplicações são distintas e promovem a melhora da experiência dos usuários – apresentando itens relacionados e elencados de acordo com a navegação – e a visão computacional, que permite que os carros autônomos reconheçam elementos para tomada de decisão, como uma frenagem de emergência”.

Além disso, prossegue, o ML pode ser utilizado para uma série de tomadas de decisões: “O segmento financeiro, com as modelagens de negócio, possui uma vasta adoção de modelos de sucesso em ML”.

Ele articula que, com a digitalização de informações que, até pouco tempo, estavam apenas no papel, modelos e aplicações de extremo sucesso avançaram rapidamente em áreas como a medicina. “Com isso, é possível tratar desafios como administração e estudo sobre aplicação de medicamentos ou, até mesmo, modelos para evitar doenças”.

O especialista em cibersegurança acredita que a identificação do ML deve se tornar cada vez mais evidente nos sistemas autônomos com foguetes capazes de pousar sozinhos, aviões e carros que não necessitam de pilotos. “O ML deve facilitar diversos elementos da vida cotidiana, como diagnósticos, ofertas e sentenças jurídicas, por exemplo, que poderão ser promulgadas pelos modelos desenvolvidos”, conclui Sousa.

Para mais informações, basta acessar: https://www.linkedin.com/in/deyvid-sousa-227a581/